Indian Mathematician and astronomer Brahmagupta

BrahmaguptaBrahmagupta (598–.670 CE) Bramhgupta Formla

 

circle

Main article: Bramhagupta’s formual

Brahmagupta’s most famous result in geometry is his format for cyclic quadrilaterals. Given the lengths of the sides of any cyclic quadrilateral, Brahmagupta gave an approximate and an exact formula for the figure’s area,

12.21. The approximate area is the product of the halves of the sums of the sides and opposite sides of a triangle and a quadrilateral. The accurate [area] is the square root from the product of the halves of the sums of the sides diminished by [each] side of the quadrilateral.

So given the lengths p, q, r and s of a cyclic quadrilateral, the approximate area

 

 

p1is while, p2    the exact area is

p2 p3

 

Although Brahmagupta does not explicitly state that these quadrilaterals are cyclic, it is apparent from his rules that this is the case. Heron’s formula is a special case of this formula and it can be derived by setting one of the sides equal to zero.

 

 

to be continue ….on http://www.speak2world.wordpress.com

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s